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The classical theory of the bending of thin plates Is affected with a

formal contradiction as is wellknown. The contradiction consists in the

noncorrespondence of the order of the differential equations with the

number of boundary conditions. In order to remove this contradiction a

method for the relaying of static boundary conditions is usedj e.g. the

given boundary reactions are replaced by others which are statically

equivalent on any section of the boundary.

In 1944 E. R.eissner in article [i] proposed a new theory of the

bending of thin plates, in which the order of the equations agrees with the

number of boundary conditions. This article, persuasive in its clearness

and elegance, called forth a widespread reaction in scientific literature,

and is the main subject discussed in the present work.

i. In the article [i] E. Reissner considers a plate of constant thickness,

acted upon by normal forces of variable intensity(i/2)p and -(i/2)p,

applied to the upper and lower boundary planes. It is assumed that forces

of mass are absent.

The law of the stress distribution through the thickness of the plate

is given by the equalities

Mx z My z H z

,'x - h2/6h/2 "Y h2/---6 h2/6h/2
(l.1)

where the axes x and y are considered to lie in the middle plane of the

plate, and where h denotes the full thickness of the plate (h----const.).

The law of the distribution of the remaining stresses is determined

from the equilibrium equations of the three-dimensional problem in the

theory of elasticity,

*Translated from Izvestia 0tdelenie Tekhnicheskikh Nauk, Akad.

Nauk SSR, no. 4, Apr. 1958, pp. 102-109.

NASA reviewer's note: Several obviously typographical errors in

equations in the original Russian text have been corrected by the reviewer

without comment.
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•xz ] _yz- _/3L

Oz: - _-\_-_--+ _yi 7_72 3thl2SJ

(1.2)

where

Vx _x + _H _ _ (1.3)
-_x _ Vy:_+ _-7-

It is easy to verify that if the relatior

3vx _vy+ p = o (1.4)
_--_-+3y

holds, then all three equilibrium equations in the general problem of

the theory of elasticity will be satisfied (iz the absence of forces of

mass), as well as the boundary conditions

for z = + h
-,_ TXZ = Ty z = 0 GZ = -_P+1 (1.5)

which correspond to the problem formulated above.

The equalities

_+h/2

h/2 zsx dz =M X

_+h/2

h/2 Z_y dz = My

_+h/2

h/2 Txz dz = Vx

_+h/2

h/2 ZTxy dz = H

+h/2

h/2 Ty z dz = Vy

(1.6)

hold, from which it follows that Mx, M, H, V_, V. are to be understood

as moments and shearing stress resultants in the classical plate theory.

Thus, the equalities (1.3) and (1.4) are the heart of the equilibrium

equation, which must be satisfied by the moments and the shearing

stresses. These, as is well known, can be reduced to the single equation



_x--_-+ _x _---7_ + p
= o {t.71

We introduce into the discussion the stress energy of the plate, defined

by the following formula from the theory of elasticity

H = i + 2 + 2 2v OxOy x z y z2E _y o z + o o +

(t.8)

By virtue of (t.t) and (t.Z) this equality is brought to the form

+ + + + oz d dx dy

Further, E, Reissner applies Castigliano's principle, which states that

of all the statically possible stressed states, that state arises in the elastic

body for which /I is a minimum.

We get a problem for the stipulated extremum (M x, My, H, V x, V.
must satisfy the equilibrium equations), for the solution of which E. Re[ssner

proposes to apply undetermined Lagrange multipliers. Thus, for instance,

it is possible in (1.9) to express V x, Vy in terms of M x, M , H, with the
help of (i.3), and then add to tile subintegral expression in_ormula (i.9) the

summand

2EhwI82Mx 2 82H 82My 1o1

+ + +-j

where w is a Lagrange multiplier, coinciding in meaning with the normal

bend in the classical theory of plates, if by E we understand Young's

modulus. Having carried out a variation with respect to the variables

M x, My, H, E. Reissner obtained the equalities
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h2
Mx'9(1- v)\_x + roy/

h2v

1o(i - _)
p =_ DI_2w+ v _2w_

\Sx2 8y2/

h2 (_Vy _Vxl h2_
My 9(i - v)\_y + v --_--]i0(i- v) P = \_y2 + V 8x2/

(i.ii)

(where D is the cylindrical rigidity), which must be satisfied at all points

of the middle of the plate, and the equality

Mn 12(1 + v) Vn + Hn s
5hE 5hE

(i.lz)
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which must be fulfilled on the boundary.

It is obvious that Equations (i.i) are a generalization of the elasticity

relations of the classical plate theory, and differ from these only by those

summands of the left members of the equation which contain the multiplier
h 2"

The equality (i.iZ) determines the formulation of the boundary condi-

tions. In the theory described, the static boundary conditions have the form

Mn = _n Hns = H-ns Vn = Vn (t.t3)

and the geometric (homogeneous) boundary con:[itions are written thus:

_w _ 12(1 + v) Vn @w _ 12(1 -,- v) Vs w = 0 (i.i4)
5n 5hE as 5hi]

We have, in this manner, three boundary conditions, on each boundary

which is the main difference between the theor} presented by E. Reissner,

and the classical theory of thin plates.

Z. The results presented in Sec. i permit of an obvious generalization.

Instead of (i.i) and (I.2) we can write
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where

Ox = Mx_(Z) ay = My_(Z) Txy = H_(z)

•_z = Vxe)Z) _yz : vy¢(z) "z = p_(z)

-h/2 z

oCzl:_[z _(z)_z,c_.)=fo _Cz)_z

Here q)(z) is an odd function satisfying the conditions

h/2

F F =1-
J -h/2 J 0 2

(Z.l)

(z.z)

The generalization consists in having the linear law of the stress

distribution through the thickness of the plate replaced by an arbitrary

inverse symmetrical law which obeys only the integral conditions (2.Z).

For

= 12_(z) -_ z Iz.3)
hJ

we shall go back to the results of Sec. i.

It is easy to verify that if Mx, M. , H, V , V satisfy ]Equations (t.3)
y x..y

and (t.4) then all three equilibrium equations of the general elasticity theory

and the boundary conditions (i.5) will be satisfied. The relations (i.6) re=

main valid as a consequence of (2.2) and consequently, as before, M x, M. ,

H, V x, V. can be considered as moments and stresses, and (1.3) and (i._)

as equilibrium equations which they must satisfy.

For the stress energy, instead of (t.9), the formula

F

1 22E +M_- 2_MxMy+20- v)_2 +2(z+ v)B
L

÷ + _ + F +h/2 -_
_x/3 J-h/2 _z

(2._)

will hold, where

f +h/2 f +h/2 f +h/_
A = J-h/2 q02(z)dz" B : J-h�2 @2(zldz" C = J-h�2 q:)(z)_/(zldz



Application of Castigliano's principle brings us to the relations

M X -

My

Here E owes its origin to the Lagrange multiplier {i.10). It need not

necessarily be identified with Young's modulus. E can be chosen in such a

way that the equality

E -D

A(I- v2)

is satisfied. Then the right members of (2.5) will coincide with the right

members of {i.li).

With regard to the magnitudes B/A anc C/A, these depend on the

choice of the functions qD(z). This means that into the summands by which

l_.. Reissner's theory differs from the classical theory, there enter numer-

ical coefficients depending on our arbitrary choice.

The numerical coefficients may theor,-ticaIIy oscillate between

unbounded limits, as follows from the follo_ing example.

Let

q?(z) = - i___ for - h/2 < z < - h/2 + _ and for h/2 - c < z < h/2
he

q0(z) = 0 for - h/2 + : < :: < + h/2 - c

(Such a function is used by E. Reissner in [2] for the formulation of the

theory of sandwich-plates.) Then

+h/2 F +h/2 2lim F z_(z)dz = I, lim A = :im _2dz = lim

c-_0 d_h/2 c-_0 c-_0 J-h/2 c-_0 h2:

(2.5)

+h/2 ilim ¢(z) = 1 lim B = lim _2dz = --

¢-*0 h _-_0 ¢-_0 J-h�2 h



lira_(z)= z i_ C = llm _/+h/2
e ---_0 h e -_0 e ---_0 J -h/2

_(z)_Cz)dz= !
h

IS we choose _ according to formula (Z.3), then

A - 12 B - 6 c - 5

h3 5h 5h

B and G have changed little, but A can be increased infinitely. Common

sense and innumerable computational data tell us that formula {2.3) reflects

approximately correctly the true law of the distribution of 6x, ¢_,'g_.

away from boundaries and other lines (or points) of deformation of the

strained state. However, in boundary zones formula (2.3) can turn out to

be very far from reality. The question arises as to what exerts the greatest

influence on the correction contributed by E. Reissner's theory: the elastic

phenomena occurring near the boundary, or the elastic phenomena originating

away from it? Let us consider an example.

3. In article [2] E. Reissner has shown, that according to the plate

theory proposed by him, the moment Mr, Hro and the shearing stresses

Vr, VO, in polar coordinates, in the absence of surface load, are expressed

by formulas

F_% V ____+ V _2w_ _Vr

Mr = -D[_r2 + _ _r _ ae2J+ 2k2

_ (r _@) k2[ I _Vr _ (V@I] (3.1)Hr@ = -(i - v)D _rr + _ + r _\--_-/j

1 bx bx
V r - V@ =

r b@ br

Here k 2 is a small parameter commensurable with h, whose exact

meaning depends on the choice of q_(z);if the latter is determined by formula

(Z. 3), then

k2_l- vD
2 G



where G is the shear modulus.

ties the equation

The bending of the plate w, satis-

where q_ is the real part of the analytic function q_ + i@, of complex argument

re iO. The function X "- _1 -- @, where @1 satLsfies the equation

*i - k2 + 1 ___ + i *I = 0

--_ r _r r2

We note that whenk = O, we shall have @l = O, i.e. we return to the

classical plate theory. We shall consider the computation problem of a

circular plate, without load on the surface, to. whose free boundary are

applied the following forces: the bending monlent m r cos nO, the transverse

force_)r cos nO, the moment of rotation hrO sin nO. (Here mr, _r, hrO are

constant, n > 2).

The system of boundary reactions is in self equilibrium, and a solu-

tion can be sought in the form:

= $*(r) cos nO _ = _*(r) sin nO Dw = w_(r) cos n@ _i = _(r) sin nO

where the starred magnitudes must satisfy the limiting conditions where
r -- O. Therefore we can let

= _ = AI --ff w = + A2
n + i rn

where r 0 is the radius of the plate.

The function _ must satisfy the equation

Id * . ii

• k2 _i+ i d_l n2

_i - \d_-- r dr r2 _

=0

and the limiting condition, when r _--- O. We shall set, therefore,
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*_- (ro _i A3 exp (- _/Jn _-_i

where Jn is a modified Bessel function of the first type [3], which is de-

fined for integraln by the following series

F
2
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s:(n + s)'
s=O

The asymptotic expansion of Jn for large t's has the form[ 3]

Jn(t)- i et _ 4# - I + (4n2 - I)(4n2 - 32)-_ l'.8t 2"(8t)2 1

+ exp [i(n
4n 2 - i + (4n 2 - l)(4n 2 - 32 )

l_8t 2_(8t) 2

so that we can let

+

l

Jn(t) _ l__!__et(l
\

4n28_- i)

In addition the formulas [3]

Jn' = 2_Jn_l + Jn+l)

hold, from which

Jn" = ¼(Jn-2 + 2Jn + Jn+2)

Jnt(t) _ IV-_ et_ 4(n2 + i) -_8t

g--

jn,,(t ) _ i etll

L

4( n2+ 3)-

st r
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On the boundary of the plate, t equal to k-

applying the derived formulas (the approximate

placed by exact equality signs) we shall get

Ir 0 is very large, and

equality signs are re-

_ilr=ro = A3_ 4n2 - 1

dr Ir=r 0
k 8r 0

dr2 Ir=r0

i A3 _
k2 8r 0

Substituting in E. Reissner's computation formulas the expressions

for w and X and disregarding magnitudes of order l< z, after a comparison

with magnitudes of order one, we shall find

= _ - r nMr _ + 2 v(n - 2) A1 __
[ 4 r_

F2k2n 1 1. cos ne
+ --/--\_ dr

I(l W) r n
Hr0: _ A_--_+n(n - 1)(1 - v)A2 _-

%

rn-2
+ n(n - I)(i - v)_

2* I
rn-2 d _l *
n-2 -_k2 -- + _ sin nO

r0 dr 2

(3.2)

F
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l_ A rn-1 _
= COS 710

Vr _ lrO-i r0nr *

For the determination of the constants of integration, we get, with the

aid of the boundary conditions, equations of the forrr_

_ _ 2nk E 4n2 + 7 k_A3 = mrn + 2 4v(n 2) A1 _ n(n - 1)(1 - v)A 2 - _ - 8r0

n(l - v)

4 A1 + n(n - i)(i - v)A2- _ 4(n2 + 6) - 1 k_A3- 8r 0 = hro

__ n_ 4n 2 ik_A3n AI _ - = _2
r0 ro 8r 0

(3.3)
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We multiply the second of these equations by -n/ro, add it to the third

equation, and replace the second equation by the combination obtained

2nk_i 4n2 + 7 _A_ n + 2 - 4v(n - 2) AI _ n(n - I)(i - v)A 2 - r--_--L 8 3 : mr

n 1 n(l v n(n - i)(i - v) _ __n 25 k_ A3 : Dr
_00 4 AI- r0 A2 r0 8 r0 r0

n_n- _. 4n 2 - i k___nroAI _ r0 8ro A3 = Dr

The solution of the system obtained has the form

K
A i = Aio + r0 Ail +

(i = i, 2, 3)

where Ai0 is the solution of the *boundary" system obtained from (3.3)

where k -- 0, and All is the first correction, which can be obtained, for

instance, by the method of successive approximations.

The boundary system is broken up, A10 and A20 are determined from

the first two equations of this system, which do not differ from the equations

obtained for the computation of the plate in accordance with the classical

theory {relaxed static boundary conditions).

Thus E. Reissner's theory makes it possible : a) to introduce

corrections of order k after a comparison with unity in the constants AI,

AZ, corresponding to the classical plate theory; b) to determine the new

constant A 3 and construct an additional stress state related to the function _1.

4. The asymptotic formulas (3.2) show that Jn(t) decreases quickly with t

for large t's. Consequently the stress state related to the constant A 3 is

of pronounced local character. It is damped as it becomes remote from

the boundary, as exp (--h* s), where h* = h/r0eok, s is the distance from

the boundary along the normal, i.e. it is faster than the simple bpundary

effect in the edge region which is damped according to the law exp(-_s).

This stressed state is called by E. Reissner the boundary effect: it

differs, however, qualitatively from the latter, and deserves a special

name. We shall call it, from now on, "Reissner's boundary effect'.

We shall let in the example considered (sec. 3)

nhr0
-o

mr = Dr r0
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(the system of boundary reactions is statistically equivalent to zero on any

section of the boundary).

Then the system (3.3) will give

At0 = _0 --0 A30 _ ½ A_i, A21, A31 ~ Or

The stress state determined by the classical theory vanishes. What

remain are: a) Reissner's boundary effect, and b) a "correctional"

stress state whose intensity is proportional to k/r0r,_h _.

Thus two systems of boundary forces are statically equivalent to each

other, and evoke in the plate elastic phenomena, differing by the stress

state, the intensity of which falls extremely quickly while becoming remote

from the boundary, from magnitudes of order _r up to magnitudes of h_r .

Turning our attention to the first two of the computing formulas (3.1),

we note that the terms which correct the classical theory contain the mul-

tiplier k 2. These have a value in the immediate proximity of the boundary,

i.e. when it is still necessary to take into consideration the quickly damped

function qJl*, the derivatives of which are large compared to the function

itself (formulas 3.2).

Consequently the corrections of E, Reissner's theory are reduced to

the above described Reissner's boundary effect: and the "correctional" stress

state. The intensity of both these stress states is related to elastic pheno-

mena taking place in the immediate proximity of the boundary, where the law

of the distribution of the stresses accepted by Reissner can turn out to be

far from reality.

This means that E. Reissner's theory, while giving a correct qualita-

tive picture of a phenomenon, may also give false magnitudes for the

corrections. The shortcoming of this theory i._ that it is based on hypo-

theses which reflect phenomena occurring away from the boundary of the

plate, while the main part is played (or at any rate may be played) by phen-

omena holding near to the boundaries.

5. In conclusion we will touch on the workt of B. F. Vlasov [4]. In this ar-

ticle the same problem as in article [1] is considered. The law of the vari-

ation of displacements on the thickness of the plate is given.

F

2
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t This paragraph was written by the author in the light of the appearance of

article [4], after the main part of the article had already been submitted

for print.
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U(X,y,z) = -zt x

_(x,y,z) = -Zty
4z 3 1 o

3h 2 G TYZ

w = w(x,y)

G _ xzO= TYZ° \by -

13

(5.1)

(5.2)

This comprises one of the two assumptions which are at the basis

orB. F. Vlasov's theory. From here with the aid of Hooke's law the ten-

sions are computed,_nd then the moments and shearing stresses. We have

{in Reissner's notations)

Eh 3 (bt x 3ty 1 Eh3 IC_Txz ° bTyzO]

Mx = 12(_ - v2)\ _-_- + v b--y-J 6o(1 : v2) G\ b--_--- + v 8-_--/

T° °)Eh 3 I_ty 8tx 1 Eh 3 l_TYZU + 8Txz (9-3)

My- :_2(1- ,,2)\_y+ " _-_-/ 6oG_ ,,2)a_y " _x

H _
f tx

240-- ,,2)b--T+ _xj
m3 zfb_z ° _')_ _+ yz

120(1 + v) G_ y

Vx = 2_ hTxz o Vy = 2_ hT O
3 3 yz

Thus, the equations of the continuity of deformations and Hooke's law

of the three dimensional problem of the theory of elasticity are fulfilled ex-

actly. The equilibrium equations are satisfied integrally, with the aid of

Lagrange's principle, using not the exact expression for the variation of

energy, but the approximate formula

5U= -

(9.4}



14

After the usual transformations, this formula brings us to the equili-

brium equations of the classical plate theory (1.3), (1.4), and to the formu-

lation of the boundary conditions, which differ from those of Reissner only

by the value of the numericat multipliers in the coefficients for V n and V s
in the formulas (I.14).

B. F. Vlasov asserts that formula (5.4) follows from the fact that in

the theory of plates the problem of the determination of stresses is replaced

by the problem of moments and stresses. (This fact is considered by B. F.

Vlasov as the second fundamental assumption in his work). We cannot

agree with such a proposition. For instance, the energy variation of the

stresses _x will be expressed thus

F+h/2
(s.s)

F

In addition

+h/2

h/2 _-
(s.6)

is given.

The question is posed as to how there can be obtained from (5.5) with

the aid of (5.6) a term corresponding to the fi=st summand of the subintegral

expression (5.4). The answer is obvious. The *assumptions" (5.6) are

insufficient. We must replace the first expre_sion

u(x,y,z) : -ztx 4z" i To
r

5h_ G xz 15.71

by a simpler one.

u(x,y,z) = -zt.... (5.S)

Geometrically, this denotes accepting the hypothesis of rectilinearity

of the deformed normal. Thus formula (5.4) is not a consequence of B. F.

Vlasov's second assumption. Besides it contradicts his first assumption,

which states: "A rectilinear element of a plate which is normal to the mid-

dle plane until deformation, bends in the process of deformation in such a

way, that displacements on the thickness of the plate vary parabolically.
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From an analytical point of view replacing (5.7) by the relation (5.8)

is equivalent to making the assumption that magnitudes of the form T°xz/G

are negligibly small by comparison with magnitudes of the form t x.
Meanwhile it is not difficult to see that the formulas (5.2), (5.3) proposed

by B. F. VIasov, differ from the formulas of the classical plate theory by

terms of the same order.

Therefore the refinements of B. F. Vlasov are altogether devoid of

authenticity.

We juxtapose articles [4] and [ I].

Reissner:

given are: a) the law of variation of stresses Ox, Oy, Txy through

the thickness; b) the equilibrium conditions and Hooke's law are exactly

satisfied. (E. Relssner uses Hooke's law in the construction of the

expression for the energy of tensions.) c) the continuity conditions

for the deformations are integrally satisfied (with the aid of a correct

application of Castigliano's prlnclple.)

B. F. Vlasov:

a) given is the law of variation of u, v, w through the thickness;

b) the continuity conditions for the deformations and Hooke's law are

exactly satisfied (with the aid of an incorrect application of

Lagrange' s principle).

The law of change of u, v, w of B. F. Vlasov is in fact equivalent to the

law of change of _rx, ary, Vxy of E. Reissner, since both lead to the same
{parabolic) law of the distribution of displaced tensions.

The question naturally arises as to what are the advantages of article [4].

B. F. Vlasov considers it to be his special merit that he does not use

the proposition that " . . .an element, initially rectilinear and normal to the

middle plane, remains rectilinear even after deformation." It is difficult

to understand why B. F. Vlasov considers the proposition about the recti-

linearity of the deformed normal to be so vicious, but from the recapitula-

tion of article [I] (para. I) we can see that F.. Reissner did not use this

proposition either. Probably B. F. Vlasov wants to say that E. Reissner

based himself somewhere on this proposition implicitly after all. This may

not be devoid of foundation, but as we have seen, the same may be said of

B. F. Vlasov's work.
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